27 research outputs found

    SuperCam, a 64-pixel heterodyne imaging array for the 870 micron atmospheric window

    Get PDF
    We report on the development of SuperCam, a 64 pixel, superheterodyne camera designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The advent of such a system will provide an order of magnitude increase in mapping speed over what is now available and revolutionize how observational astronomy is performed in this important wavelength regime. Unlike the situation with bolometric detectors, heterodyne receiver systems are coherent, retaining information about both the amplitude and phase of the incident photon stream. From this information a high resolution spectrum of the incident light can be obtained without multiplexing. SuperCam will be constructed by stacking eight, 1x8 rows of fixed tuned, SIS mixers. The IF output of each mixer will be connected to a low-noise, broadband MMIC amplifier integrated into the mixer block. The instantaneous IF bandwidth of each pixel will be ~2 GHz, with a center frequency of 5 GHz. A spectrum of the central 500 MHz of each IF band will be provided by the array spectrometer. Local oscillator power is provided by a frequency multiplier whose output is divided between the pixels by using a matrix of waveguide power dividers. The mixer array will be cooled to 4K by a closed-cycle refrigeration system. SuperCam will reside at the Cassegrain focus of the 10m Heinrich Hertz telescope (HHT). A prototype single row of the array will be tested on the HHT in 2006, with the first engineering run of the full array in late 2007. The array is designed and constructed so that it may be readily scaled to higher frequencies.Comment: 12 pages, 14 figures, to be published in the Proceedings of SPIE Vol. 6275, "Astronomical Telescopes and Instrumentation, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III

    The Hertz/VPM polarimeter: Design and first light observations

    Full text link
    We present first results of Hertz/VPM, the first submillimeter polarimeter employing the dual Variable-delay Polarization Modulator (dual-VPM). This device differs from previously used polarization modulators in that it operates in translation rather than mechanical rotation. We discuss the basic theory behind this device, and its potential advantages over the commonly used half wave plate (HWP). The dual-VPM was tested both at the Submillimeter Telescope Observatory (SMTO) and in the lab. In each case we present a detailed description of the setup. We discovered nonideal behavior in the system. This is at least in part due to properties of the VPM wire grids (diameter, spacing) employed in our experiment. Despite this, we found that the dual-VPM system is robust, operating with high efficiency and low instrumental polarization. This device is well suited for air and space-borne applications.Comment: 31 pages, 11 figures, 2 table

    Test and integration results from SuperCam: a 64-pixel array receiver for the 350 GHz atmospheric window

    Get PDF
    We report on laboratory testing and telescope integration of SuperCam, a 64 pixel imaging spectrometer designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The Supercam key project is a fully sampled Galactic plane survey covering over 500 square degrees of the Galaxy in ^(12)CO(3-2) and ^(13)CO(3-2) with 0.3 km/s velocity resolution. SuperCam will have several times more pixels than any existing spectroscopic imaging array at submillimeter wavelengths. The exceptional mapping speed that will result, combined with the efficiency and angular resolution provided by the HHT will make SuperCam a powerful instrument for probing the history of star formation in our Galaxy and nearby galaxies. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. Through Galactic surveys, particularly in CO and its isotopomers, the impact of Galactic environment on these phenomena will be realized. These studies will serve as “finder charts” for future focused research (e.g. with ALMA) and markedly improve the interpretation, and enhance the value of numerous contemporary surveys. In the past, all heterodyne focal plane arrays have been constructed using discrete mixers, arrayed in the focal plane. SuperCam reduces cryogenic and mechanical complexity by integrating multiple mixers and amplifiers into a single array module with a single set of DC and IF connectors. These modules are housed in a closed-cycle cryostat with a 1.5W capacity 4K cooler. The Supercam instrument is currently undergoing laboratory testing with four of the eight mixer array modules installed in the cryostat (32 pixels). Work is now underway to perform the necessary modifications at the 10m Heinrich Hertz Telescope to accept the Supercam system. Supercam will be installed in the cassegrain cabin of the HHT, including the optical system, IF processing, spectrometers and control electronics. Supercam will be integrated with the HHT during the 2009-2010 observing season with 32 pixels installed. The system will be upgraded to 64 pixels during the summer of 2010 after assembly of the four additional mixer modules is completed

    SuperCam: a 64 pixel heterodyne imaging spectrometer

    Get PDF
    We report on the development of SuperCam, a 64 pixel imaging spectrometer designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The Supercam key project is a fully sampled Galactic plane survey covering over 500 square degrees of the Galaxy in 12CO(3-2) and 13CO(3-2) with 0.3 km/s velocity resolution

    First observations with SuperCam and future plans

    Get PDF
    Supercam is a 345 GHz, 64-pixel heterodyne imaging array for the Heinrich Hertz Submillimeter Telescope (HHSMT). By integrating SIS mixer devices with Low Noise Ampliers (LNAs) in 8 - 1x8 pixel modules, the size needed for the cryostat and the complexity of internal wiring is signicantly reduced. All subsystems including the optics, cryostat, bias system, IF boxes, and spectrometer have been integrated for all 64 pixels. In the spring of 2012, SuperCam was installed on the HHSMT for an engineering run where it underwent system level tests and performed rst light observations. In the fall of 2012 SuperCam will begin a 500 square degree survey of the Galactic Plane in ^(12)CO J=3-2. This large-scale survey will help answer fundamental questions about the formation, physical conditions, and energetics of molecular clouds within the Milky Way. The data set will be available via the web to all interested researchers

    SuperCam: a 64 pixel heterodyne imaging spectrometer

    Get PDF
    We report on the development of SuperCam, a 64 pixel imaging spectrometer designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The Supercam key project is a fully sampled Galactic plane survey covering over 500 square degrees of the Galaxy in 12CO(3-2) and 13CO(3-2) with 0.3 km/s velocity resolution

    OSIRIS-REx Encounters Bennu: Initial Assessment from the Approach Phase

    Get PDF
    The OSIRIS-REx spacecraft launched on September 8, 2016, on a seven-year journey to return samples from asteroid (101955) Bennu. This presentation summarizes the scientific results from the Approach and Preliminary Survey phases. Bennu observations are set to begin on August 17, 2018,when the asteroid is bright enough for detection by the PolyCam. PolyCam and MapCam collect data to survey the asteroid environment for any hazards and characterize the asteroid point-source photometric properties. Resolved images acquired during final approach, starting in late October 2018, allow the creation of a shape model using stereophotoclinometry (SPC), needed by both the navigation team and science planners. The OVIRS and OTES spectrometers characterize the point- source spectral properties over a full rotation period, providing a first look at any features and thermophysical properties. TAGSAM is released from the launch container and deployed into the sampling configuration then returned to the stow position.Preliminary Survey follows the Approach Phase in early December 2018. This phase consists of a series of hyperbolic trajectories that cross over the North and South poles and the equator of Bennu at a close-approach distance of 7 km. Images from these Preliminary Survey passes provide data to complete the 75-cm resolution SPC global shape model and solve for the rotation state. Once the shape model is complete, the asteroid coordinate system is defined for co-registration of all data products. These higher-resolution images also constrain the photometric properties and allow for an initial assessment of the geology. In Preliminary Survey the team also obtains the first OLA data, providing a measure of the surface topography. OVIRS and OTES collect data as "ride-along" instruments, with the spacecraft pointing driven by imaging constraints. These data provide a first look at the spectral variation across the surface of Bennu. Radio science measurements, combined with altimetry and imagery, determine Bennu's mass, a prerequisite to placing the spacecraft into orbit in late December 2018. Together, data from the Approach and Preliminary Survey phases set the stage for the extensive mapping planned for 2019. These dates are the baseline plan. Any contingency or unexpected discovery may change this mission profile
    corecore